Bu sayfa, k değişkenli bir sürecinin farklı matris gösterimlerinin ayrıntılarıdır.
Var(p)
Her bir k x 1 vektör ve her k x k matris olmak üzere:
Geniş matris gösterimi
Denklem Denkleme Gösterim
y değişkenleri birebir yeniden yazılırsa:
Kısa matris gösterim
k değişkenli bir VAR(p) genel bir biçimde yeniden yazılabibilir (T observations through
Where:
and
One can then solve for the coefficient matrix B (e.g. using an estimation of )
Kaynakça
- Helmut Lütkepohl. New Introduction to Multiple Time Series Analysis. Springer. 2005.
wikipedia, wiki, viki, vikipedia, oku, kitap, kütüphane, kütübhane, ara, ara bul, bul, herşey, ne arasanız burada,hikayeler, makale, kitaplar, öğren, wiki, bilgi, tarih, yukle, izle, telefon için, turk, türk, türkçe, turkce, nasıl yapılır, ne demek, nasıl, yapmak, yapılır, indir, ücretsiz, ücretsiz indir, bedava, bedava indir, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, resim, müzik, şarkı, film, film, oyun, oyunlar, mobil, cep telefonu, telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, bilgisayar
Bu sayfa k degiskenli bir surecinin farkli matris gosterimlerinin ayrintilaridir Var p Her yi displaystyle y i bir k x 1 vektor ve her Ai displaystyle A i k x k matris olmak uzere yt c A1yt 1 A2yt 2 Apyt p et displaystyle y t c A 1 y t 1 A 2 y t 2 cdots A p y t p e t Genis matris gosterimi y1 ty2 t yk t c1c2 ck a1 11a1 21 a1 k1a2 11a2 21 a2 k1 ak 11ak 21 ak k1 y1 t 1y2 t 1 yk t 1 a1 1pa1 2p a1 kpa2 1pa2 2p a2 kp ak 1pak 2p ak kp y1 t py2 t p yk t p e1 te2 t ek t displaystyle begin bmatrix y 1 t y 2 t vdots y k t end bmatrix begin bmatrix c 1 c 2 vdots c k end bmatrix begin bmatrix a 1 1 1 amp a 1 2 1 amp cdots amp a 1 k 1 a 2 1 1 amp a 2 2 1 amp cdots amp a 2 k 1 vdots amp vdots amp ddots amp vdots a k 1 1 amp a k 2 1 amp cdots amp a k k 1 end bmatrix begin bmatrix y 1 t 1 y 2 t 1 vdots y k t 1 end bmatrix cdots begin bmatrix a 1 1 p amp a 1 2 p amp cdots amp a 1 k p a 2 1 p amp a 2 2 p amp cdots amp a 2 k p vdots amp vdots amp ddots amp vdots a k 1 p amp a k 2 p amp cdots amp a k k p end bmatrix begin bmatrix y 1 t p y 2 t p vdots y k t p end bmatrix begin bmatrix e 1 t e 2 t vdots e k t end bmatrix Denklem Denkleme Gosterimy degiskenleri birebir yeniden yazilirsa y1 t c1 a1 11y1 t 1 a1 21y2 t 1 a1 k1yk t 1 a1 1py1 t p a1 2py2 t p a1 kpyk t p e1 t displaystyle y 1 t c 1 a 1 1 1 y 1 t 1 a 1 2 1 y 2 t 1 cdots a 1 k 1 y k t 1 cdots a 1 1 p y 1 t p a 1 2 p y 2 t p cdots a 1 k p y k t p e 1 t y2 t c2 a2 11y1 t 1 a2 21y2 t 1 a2 k1yk t 1 a2 1py1 t p a2 2py2 t p a2 kpyk t p e2 t displaystyle y 2 t c 2 a 2 1 1 y 1 t 1 a 2 2 1 y 2 t 1 cdots a 2 k 1 y k t 1 cdots a 2 1 p y 1 t p a 2 2 p y 2 t p cdots a 2 k p y k t p e 2 t yk t ck ak 11y1 t 1 ak 21y2 t 1 ak k1yk t 1 ak 1py1 t p ak 2py2 t p ak kpyk t p ek t displaystyle y k t c k a k 1 1 y 1 t 1 a k 2 1 y 2 t 1 cdots a k k 1 y k t 1 cdots a k 1 p y 1 t p a k 2 p y 2 t p cdots a k k p y k t p e k t Kisa matris gosterimk degiskenli bir VAR p genel bir bicimde yeniden yazilabibilir T observations y0 displaystyle y 0 through yT displaystyle y T Y BZ U displaystyle Y BZ U Where Y ypyp 1 yT y1 py1 p 1 y1 Ty2 py2 p 1 y2 T yk pyk p 1 yk T displaystyle Y begin bmatrix y p amp y p 1 amp cdots amp y T end bmatrix begin bmatrix y 1 p amp y 1 p 1 amp cdots amp y 1 T y 2 p amp y 2 p 1 amp cdots amp y 2 T vdots amp vdots amp vdots amp vdots y k p amp y k p 1 amp cdots amp y k T end bmatrix B cA1A2 Ap c1a1 11a1 21 a1 k1 a1 1pa1 2p a1 kpc2a2 11a2 21 a2 k1 a2 1pa2 2p a2 kp ckak 11ak 21 ak k1 ak 1pak 2p ak kp displaystyle B begin bmatrix c amp A 1 amp A 2 amp cdots amp A p end bmatrix begin bmatrix c 1 amp a 1 1 1 amp a 1 2 1 amp cdots amp a 1 k 1 amp cdots amp a 1 1 p amp a 1 2 p amp cdots amp a 1 k p c 2 amp a 2 1 1 amp a 2 2 1 amp cdots amp a 2 k 1 amp cdots amp a 2 1 p amp a 2 2 p amp cdots amp a 2 k p vdots amp vdots amp vdots amp ddots amp vdots amp cdots amp vdots amp vdots amp ddots amp vdots c k amp a k 1 1 amp a k 2 1 amp cdots amp a k k 1 amp cdots amp a k 1 p amp a k 2 p amp cdots amp a k k p end bmatrix Z 11 1yp 1yp yT 1yp 2yp 1 yT 2 y0y1 yT p 11 1y1 p 1y1 p y1 T 1y2 p 1y2 p y2 T 1 yk p 1yk p yk T 1y1 p 2y1 p 1 y1 T 2y2 p 2y2 p 1 y2 T 2 yk p 2yk p 1 yk T 2 y1 0y1 1 y1 T py2 0y2 1 y2 T p yk 0yk 1 yk T p displaystyle Z begin bmatrix 1 amp 1 amp cdots amp 1 y p 1 amp y p amp cdots amp y T 1 y p 2 amp y p 1 amp cdots amp y T 2 vdots amp vdots amp ddots amp vdots y 0 amp y 1 amp cdots amp y T p end bmatrix begin bmatrix 1 amp 1 amp cdots amp 1 y 1 p 1 amp y 1 p amp cdots amp y 1 T 1 y 2 p 1 amp y 2 p amp cdots amp y 2 T 1 vdots amp vdots amp ddots amp vdots y k p 1 amp y k p amp cdots amp y k T 1 y 1 p 2 amp y 1 p 1 amp cdots amp y 1 T 2 y 2 p 2 amp y 2 p 1 amp cdots amp y 2 T 2 vdots amp vdots amp ddots amp vdots y k p 2 amp y k p 1 amp cdots amp y k T 2 vdots amp vdots amp ddots amp vdots y 1 0 amp y 1 1 amp cdots amp y 1 T p y 2 0 amp y 2 1 amp cdots amp y 2 T p vdots amp vdots amp ddots amp vdots y k 0 amp y k 1 amp cdots amp y k T p end bmatrix and U epep 1 eT e1 pe1 p 1 e1 Te2 pe2 p 1 e2 T ek pek p 1 ek T displaystyle U begin bmatrix e p amp e p 1 amp cdots amp e T end bmatrix begin bmatrix e 1 p amp e 1 p 1 amp cdots amp e 1 T e 2 p amp e 2 p 1 amp cdots amp e 2 T vdots amp vdots amp ddots amp vdots e k p amp e k p 1 amp cdots amp e k T end bmatrix One can then solve for the coefficient matrix B e g using an estimation of Y BZ displaystyle Y approx BZ KaynakcaHelmut Lutkepohl New Introduction to Multiple Time Series Analysis Springer 2005