Doğru, matematikte mantıksal bir değerdir. Matematik'te ne olduğu belli olmayan (tanımsız) değerlerden biridir. Ayrıca geometride doğru ifadesi aynı doğrultuda olan ve her iki yönden de sonsuza kadar giden diye de tanımlanır. Bir doğru üzerinde en az 2 nokta, dışında da en az 1 nokta mevcuttur.
Tanım
Matematikte doğrunun değişik ifadeleri vardır:
- Bir noktalar kümesidir.
- Cetvel yardımıyle çizilen çizgi, iki nokta arasındaki gergin bir ip doğruyu belirtir.
- Farklı 2 noktadan yalnız bir doğru geçer.
- Farklı 2 nokta yalnız bir doğru belirtir.
- Farklı 2 düzlem en fazla bir doğruda kesişir.
Örnekler
burada:
- m doğrunun eğimi.
- b doğrunun düşey eksenle kesişme noktası.
- x y fonksiyonunun bağımsız değişken.
Üç boyutluda, bir doğru genellikle olarak ifade edilir:
burada:
- x, y ve z, tden bağımsız fonksiyonlardır.
- , ve her biri kendi değişken olan birincil değerlerdi.
- a, b ve c doğrunun eğimine bağlıdırlar, böylece vektör (a, b, c) doğruya paraleldirler.
Geleneksel tanım
R2de, tüm doğrular L ile tanımlanır.
Özellikleri
Genişlemeleri
Işın
Bir ucu sınırlı olan doğrudur. Diğer bir deyişle, bir başlangıç noktası olan ve o noktadan sonsuza doğru uzanan noktalar kümesidir. Bir doğrunun üzerinde bir nokta alıp, doğruyu o noktadan ikiye ayırdığımızda iki adet ışın elde ederiz.
Soldaki örnekte; A ucundan sınırlanmış B, C doğrultusunda, C noktasından sonsuza doğru giden bir ışındır. A ve B noktaları açık, C noktası kapalıdır. Bunun anlamı A ve B noktaları ışına dahil değildir. Işın o noktaları kapsamamaktadır.
Ayrıca bakınız
Matematik ile ilgili bu madde seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |
Geometri ile ilgili bu madde seviyesindedir. Madde içeriğini genişleterek Vikipedi'ye katkı sağlayabilirsiniz. |
wikipedia, wiki, viki, vikipedia, oku, kitap, kütüphane, kütübhane, ara, ara bul, bul, herşey, ne arasanız burada,hikayeler, makale, kitaplar, öğren, wiki, bilgi, tarih, yukle, izle, telefon için, turk, türk, türkçe, turkce, nasıl yapılır, ne demek, nasıl, yapmak, yapılır, indir, ücretsiz, ücretsiz indir, bedava, bedava indir, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, resim, müzik, şarkı, film, film, oyun, oyunlar, mobil, cep telefonu, telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, bilgisayar
Dogru matematikte mantiksal bir degerdir Matematik te ne oldugu belli olmayan tanimsiz degerlerden biridir Ayrica geometride dogru ifadesi ayni dogrultuda olan ve her iki yonden de sonsuza kadar giden diye de tanimlanir Bir dogru uzerinde en az 2 nokta disinda da en az 1 nokta mevcuttur TanimMatematikte dogrunun degisik ifadeleri vardir Bir noktalar kumesidir Cetvel yardimiyle cizilen cizgi iki nokta arasindaki gergin bir ip dogruyu belirtir Farkli 2 noktadan yalniz bir dogru gecer Farkli 2 nokta yalniz bir dogru belirtir Farkli 2 duzlem en fazla bir dogruda kesisir OrneklerUc dogruy mx b displaystyle y mx b burada m dogrunun egimi b dogrunun dusey eksenle kesisme noktasi x y fonksiyonunun bagimsiz degisken Uc boyutluda bir dogru genellikle olarak ifade edilir x x0 at displaystyle x x 0 at y y0 bt displaystyle y y 0 bt z z0 ct displaystyle z z 0 ct burada x y ve z tden bagimsiz fonksiyonlardir x0 displaystyle x 0 y0 displaystyle y 0 ve z0 displaystyle z 0 her biri kendi degisken olan birincil degerlerdi a b ve c dogrunun egimine baglidirlar boylece vektor a b c dogruya paraleldirler Geleneksel tanimR2de tum dogrular L ile tanimlanir L a tb t R displaystyle L mathbf a t mathbf b mid t in mathbb R OzellikleriL x y ax by c displaystyle L x y mid ax by c GenislemeleriIsin Bir isin ornegi Bir ucu sinirli olan dogrudur Diger bir deyisle bir baslangic noktasi olan ve o noktadan sonsuza dogru uzanan noktalar kumesidir Bir dogrunun uzerinde bir nokta alip dogruyu o noktadan ikiye ayirdigimizda iki adet isin elde ederiz Soldaki ornekte A ucundan sinirlanmis B C dogrultusunda C noktasindan sonsuza dogru giden bir isindir A ve B noktalari acik C noktasi kapalidir Bunun anlami A ve B noktalari isina dahil degildir Isin o noktalari kapsamamaktadir Ayrica bakinizMatematiksel sekillerin listesiMatematik ile ilgili bu madde taslak seviyesindedir Madde icerigini genisleterek Vikipedi ye katki saglayabilirsiniz Geometri ile ilgili bu madde taslak seviyesindedir Madde icerigini genisleterek Vikipedi ye katki saglayabilirsiniz