ARDL Sınır Testi veya gecikmesi dağıtılmış otoregresif sınır testi, (ing:Autoregressive Distributed Lag Bound Test), ve tarafından 2001 yılında geliştirilen test, seviyelerinde durağan olmayan en az iki serinin durağan bir bileşimi olduğunu ifade eden eşbütünleşme kavramını test etmek amacıyla kullanılan modeldir. Özetle uzun ve kısa dönem nedensellik ilişkilerini yakalamaya yarayan modeldir. Bu eşbütünleşme testinde, diğer eşbütünleşme testlerinde olduğu gibi aralarındaki eşbütünleşme ilişkisi incelenen serilerin aynı dereceden durağan olmaları şartı bulunmamaktadır.
Sınır testi yaklaşımının avantajları
- Modelde kullanılacak değişkenlerin seviyede durağan I(0) ya da birinci farkta durağan I(1) olup olmamasına bağlı olmadan sınır testini uygulamak mümkündür. Bu sebeple sınır testini uygulamadan önce değişkenlerin durağanlık mertebelerini belirlemeye gerek yoktur. Fakat kritik değerler, değişkenlerinin I(0) ya da I(1) olmasına göre tablolaştırıldığından, değişkenlerin ikinci farkta durağan I(2) olma ihtimaline karşı sınanması gerekmektedir. İkinci farkta durağan değişkenlerde ARDL modeli uygulanamaz.
- ARDL yaklaşımında kısıtsız hata düzeltme modeli kullanıldığından, göre daha iyi istatistiksel özelliklere sahiptir ve küçük örneklerde Johansen ve Engle-Granger testlerine göre daha güvenilir sonuçlar verir. Zira eşbütünleşme analizi için diğer testler oldukça uzun bir zaman diliminde ancak iyi sonuçlar verebilmektedir.
- Y bağımlı değişkenli ve iki bağımsız değişkenli (E ve M) ARDL modeli formulasyonu ekonometri ve istatistik programları tarafından yukarıdaki şekilde tahmin edilir.
Uygulama Aşamaları
- Birim kök testleri ile değişkenlerin I(0) veya I(1) olduğu saptanır. Buradaki amaç verilerin I(2) olmadığını sınamaktır.
- Akaike (AIC), Schwarz (SIC) ve LM istatistik kriterleri kullanılarak uygun gecikmeler belirlenir.
- Akaike (AIC) ve Schwarz (SIC) ölçütlerinin minimum olduğu ve otokorelasyonun olmadığı yani LM Prob-Ki-Kare>0.05 Koşulu uygun gecikme saptanmasında önemlidir.
- Uygun gecikmeler kullanılarak F istatistiği tablosu oluşturulur.
H0:θ1=θ2=0 (Eşbütünleşme yoktur hipotezi),
Hα:θ1≠θ2≠0 (Eşbütünleşme vardır alternatif hipotezi)- F istatistiği > F tabloüstsınır ise ; H0:θ1=θ2=0 reddedilir ve eşbütünleşme vardır sonucuna varılır.
- F istatistiği < F tabloaltsınır ise ; H0:θ1=θ2=0 kabul edilir ve eşbütünleşme yoktur sonucuna varılır.
- F tabloaltsınır < F istatistiği < F tabloüstsınır ise ; Kararsız bölge
- Eğer H0 hipotezi reddedilip, eşbütünleşme olduğu sonucuna varılırsa, son aşamada ARDL Kısa Dönem ve Uzun Dönem (sapmayı gösteren Hata Düzeltme Modeli) yorumları yapılır.
- Ancak modelin çalışması için Hata Düzeltme Modeli'nin (EC(-1) veya CointEq(-1) olarak da gösterilebilir) negatif ve istatistiksel olarak anlamlı olması gerekmektedir.Yani Prob değerinin 0.05'ten küçük olması gereklidir.
- EC(-1) parametresi, bağımlı değişkenle bağımsız değişkenler arasındaki uzun dönemli ilişkisinden elde edilen kalıntıların bir dönem gecikmeli değerini göstermektedir.
Kısa-Uzun Dönem ve Hata Düzeltme Modeli
Uzun Dönem
- Y bağımlı değişkenli ve iki bağımsız değişkenli (E ve M) ARDL uzun modeli formulasyonu ekonometri ve istatistik programları tarafından yukarıdaki şekilde tahmin edilir.
Kısa Dönem ve Hata Düzeltme
- Y bağımlı değişkenli ve iki bağımsız değişkenli (E ve M) ARDL uzun modeli formulasyonu ekonometri ve istatistik programları tarafından yukarıdaki şekilde tahmin edilir. Formuldeki EC ise Hata Düzeltme Modeli'ni göstermektedir. Hata Düzeltme Modeli, kısa dönemde bağımsız değişenlerden dolayı meydana gelen şokların ne kadar sürede uzun dönemde dengeye geleceğini gösterir.
Ayrıca bakınız
Kaynakça
- ^ GÜLMEZ, Ahmet (2015). "TÜRKİYE'DE DIŞ FİNANSMAN KAYNAKLARI EKONOMİK BÜYÜME İLİŞKİSİ: ARDL SINIR TESTİ YAKLAŞIMI". Ekonomik ve Sosyal Araştırmalar Dergisi. 11 (2). s. 145.
- ^ a b DOĞRU, Bülent (2014). . Ekonomik ve Sosyal Araştırmalar Dergisi. 10 (2). Gümüşhane. s. 23. 26 Nisan 2018 tarihinde kaynağından arşivlendi. Erişim tarihi: 19 Aralık 2017.
- ^ Bektaş, Hakan (2014). "Türkiye'de Eğitim Harcamaları ve Ekonomik Büyüme Arasındaki İlişki: ARDL Sınır Testi Yaklaşımı". İstanbul Üniversitesi Siyaset, Ekonomi ve Yönetim Araştırmaları Dergisi. 2 (2). s. 84. 3 Temmuz 2017 tarihinde kaynağından . Erişim tarihi: 15 Aralık 2017.
wikipedia, wiki, viki, vikipedia, oku, kitap, kütüphane, kütübhane, ara, ara bul, bul, herşey, ne arasanız burada,hikayeler, makale, kitaplar, öğren, wiki, bilgi, tarih, yukle, izle, telefon için, turk, türk, türkçe, turkce, nasıl yapılır, ne demek, nasıl, yapmak, yapılır, indir, ücretsiz, ücretsiz indir, bedava, bedava indir, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, resim, müzik, şarkı, film, film, oyun, oyunlar, mobil, cep telefonu, telefon, android, ios, apple, samsung, iphone, xiomi, xiaomi, redmi, honor, oppo, nokia, sonya, mi, pc, web, computer, bilgisayar
ARDL Sinir Testi veya gecikmesi dagitilmis otoregresif sinir testi ing Autoregressive Distributed Lag Bound Test ve tarafindan 2001 yilinda gelistirilen test seviyelerinde duragan olmayan en az iki serinin duragan bir bilesimi oldugunu ifade eden esbutunlesme kavramini test etmek amaciyla kullanilan modeldir Ozetle uzun ve kisa donem nedensellik iliskilerini yakalamaya yarayan modeldir Bu esbutunlesme testinde diger esbutunlesme testlerinde oldugu gibi aralarindaki esbutunlesme iliskisi incelenen serilerin ayni dereceden duragan olmalari sarti bulunmamaktadir Sinir testi yaklasiminin avantajlariModelde kullanilacak degiskenlerin seviyede duragan I 0 ya da birinci farkta duragan I 1 olup olmamasina bagli olmadan sinir testini uygulamak mumkundur Bu sebeple sinir testini uygulamadan once degiskenlerin duraganlik mertebelerini belirlemeye gerek yoktur Fakat kritik degerler degiskenlerinin I 0 ya da I 1 olmasina gore tablolastirildigindan degiskenlerin ikinci farkta duragan I 2 olma ihtimaline karsi sinanmasi gerekmektedir Ikinci farkta duragan degiskenlerde ARDL modeli uygulanamaz ARDL yaklasiminda kisitsiz hata duzeltme modeli kullanildigindan gore daha iyi istatistiksel ozelliklere sahiptir ve kucuk orneklerde Johansen ve Engle Granger testlerine gore daha guvenilir sonuclar verir Zira esbutunlesme analizi icin diger testler oldukca uzun bir zaman diliminde ancak iyi sonuclar verebilmektedir Y bagimli degiskenli ve iki bagimsiz degiskenli E ve M ARDL modeli formulasyonu ekonometri ve istatistik programlari tarafindan yukaridaki sekilde tahmin edilir Uygulama AsamalariEViews programinda yapilan sinir testinde F istatistik degerinin alt ve ust sinir degerlerinden buyuk olmasi ve esbutunlesme oldugunu ifade ederBirim kok testleri ile degiskenlerin I 0 veya I 1 oldugu saptanir Buradaki amac verilerin I 2 olmadigini sinamaktir Akaike AIC Schwarz SIC ve LM istatistik kriterleri kullanilarak uygun gecikmeler belirlenir Akaike AIC ve Schwarz SIC olcutlerinin minimum oldugu ve otokorelasyonun olmadigi yani LM Prob Ki Kare gt 0 05 Kosulu uygun gecikme saptanmasinda onemlidir Uygun gecikmeler kullanilarak F istatistigi tablosu olusturulur H0 81 82 0 Esbutunlesme yoktur hipotezi Ha 81 82 0 Esbutunlesme vardir alternatif hipotezi F istatistigi gt F tabloustsinir ise H0 81 82 0 reddedilir ve esbutunlesme vardir sonucuna varilir F istatistigi lt F tabloaltsinir ise H0 81 82 0 kabul edilir ve esbutunlesme yoktur sonucuna varilir F tabloaltsinir lt F istatistigi lt F tabloustsinir ise Kararsiz bolge Eger H0 hipotezi reddedilip esbutunlesme oldugu sonucuna varilirsa son asamada ARDL Kisa Donem ve Uzun Donem sapmayi gosteren Hata Duzeltme Modeli yorumlari yapilir Ancak modelin calismasi icin Hata Duzeltme Modeli nin EC 1 veya CointEq 1 olarak da gosterilebilir negatif ve istatistiksel olarak anlamli olmasi gerekmektedir Yani Prob degerinin 0 05 ten kucuk olmasi gereklidir EC 1 parametresi bagimli degiskenle bagimsiz degiskenler arasindaki uzun donemli iliskisinden elde edilen kalintilarin bir donem gecikmeli degerini gostermektedir Kisa Uzun Donem ve Hata Duzeltme ModeliUzun Donem Y bagimli degiskenli ve iki bagimsiz degiskenli E ve M ARDL uzun modeli formulasyonu ekonometri ve istatistik programlari tarafindan yukaridaki sekilde tahmin edilir Kisa Donem ve Hata Duzeltme Y bagimli degiskenli ve iki bagimsiz degiskenli E ve M ARDL uzun modeli formulasyonu ekonometri ve istatistik programlari tarafindan yukaridaki sekilde tahmin edilir Formuldeki EC ise Hata Duzeltme Modeli ni gostermektedir Hata Duzeltme Modeli kisa donemde bagimsiz degisenlerden dolayi meydana gelen soklarin ne kadar surede uzun donemde dengeye gelecegini gosterir Ayrica bakinizJohansen esbutunlesme testi EsbutunlesmeKaynakca GULMEZ Ahmet 2015 TURKIYE DE DIS FINANSMAN KAYNAKLARI EKONOMIK BUYUME ILISKISI ARDL SINIR TESTI YAKLASIMI Ekonomik ve Sosyal Arastirmalar Dergisi 11 2 s 145 a b DOGRU Bulent 2014 Ekonomik ve Sosyal Arastirmalar Dergisi 10 2 Gumushane s 23 26 Nisan 2018 tarihinde kaynagindan arsivlendi Erisim tarihi 19 Aralik 2017 Bektas Hakan 2014 Turkiye de Egitim Harcamalari ve Ekonomik Buyume Arasindaki Iliski ARDL Sinir Testi Yaklasimi Istanbul Universitesi Siyaset Ekonomi ve Yonetim Arastirmalari Dergisi 2 2 s 84 3 Temmuz 2017 tarihinde kaynagindan Erisim tarihi 15 Aralik 2017